Extremal and Probabilistic Graph Theory Lecture 13 April 12st, Tuesday

Recall the lecture in last class:

- Theorem 2. If G is connected, then G has a path of size $\geq \min\{n, 2\delta(G) + 1\}$. Tight: graph G consisting of k_i^*s sharing a common vertex.
- Theorem 3(Erdős-Gallai).

$$ex(n, P_t) \le \frac{(t-1)n}{2}.$$

Moreover, when $\frac{t}{n}$, the extremal graph is unique, that is, a disjoint union of k_t 's.

• **Posa' rotation.** Let P be a longest path in G from u to v. For $w \in N(v) \cap V(P)$, the path $P' = P - \{ww^+\} + \{wv\}$ is also a longest path in G. This transformation from P to P' is called a Posa'rotation.

New knowledge in this class:

- **Definition 1.** For $S \subseteq V(G)$, define $N(S) = \{v \notin S : v \in N(w) \text{ for } w \in S\}$ to be the neighborhood of S.
- Theorem 6 (Posa). Suppose every $S \subseteq V(G)$ satisfying $|N(S)| \ge \min\{n |S|, 2|S| + 1\}$. Then G has a Hamiltonian path.

Proof. Let P be a longest path in G from u to v. Let S be the set of all endpoint of paths obtained by repeatingly applying Posa's rotation from P, which preserve u as an endpoint. Define S^+, S^- (accroding to P). Then every vertex in S has no neighbors in $V(G)\backslash V(P)$, so $N(S) \subseteq V(P)$.

Claim: $\forall x \in S, N_G(x) \subseteq S^+ \bigcup S \bigcup S^-.$

Proof. Suppose $\exists y \in N(x)$, but $y \notin S^+ \bigcup S \bigcup S^-$. Then $y^- - y - y^+$ is always a subgraph of any new path obtained by Posa's rotation. We then perform a rotation, using $xy \in E(G)$, to get a new path that ends at either y^+ or y^- , so y^+ or $y^- \in S$. Therefore $y \in S^-$ or $y \in S^+$, a contradiction. This proves claim.

Then $N(S) \subseteq S^+ \bigcup S^-$, so $|N(S)| \le 2|S|$. But $|N(S)| \ge \min\{n - |S|, 2|S| + 1\}$.

This shows that $|N(S)| \ge n - |S|$, since $V(P) \ge N(S) \bigcup S$. Notice that N(S) and S are disjoint, we have $|V(P)| \ge |N(S)| + |S| \ge n$, that is to say, P is Hamiltonian path.

- **Remark.** This result is classical and has many application, that is to say, for random graph.
- **Definition 1.** A vertex u is a cut-vertex of G, if G-u is disconnected.
- Menger' Theorem. Let $A, B \subseteq V(G), G$ is connected if and only if $\exists \ 2$ disjoint paths from A to B.
- Theorem 7. If G is 2-connected, then G has a cycle of length at least $\min\{n, 2\delta(G)\}$.

- Remark 1. Tight for graphs G consisting of some K_t 's sharing 2 vertices.
- Remark 2. This implies Dirac's Theorem.
- Exercise. As the condition of Theorem 4 implies that such G must be 2-connected.
- **Proof of Theorem 7.** Let $P = x_0 x_1 \cdots x_m$ be a longest path in G. By Theorem 2, $|P| \ge \min\{n-1, 2\delta(G)\}.$

Case 0: $N(x_0) \cap N(x_m)^+ = \emptyset$.

Proof of Case θ . Since $N(x_0)$, $N(x_m) \subseteq V(P)$. If $N(x_0) \cap N(x_m)^+ \neq \emptyset$, then we can form a cycle C, such that V(C) = V(P). So $|C| = |P| + 1 \ge \min\{n, 2\delta(G) + 1\}$. Therefore, claim 1 is done.

Case 1: $\exists j < i-1$, such that $x_0 \sim x_i$, $x_m \sim x_j$.

Proof of Case 1. Pick (i,j) such that |i-j| is minimum. Let E' be the edge-set containing all edges in $x_j P x_i$. Let $C = (P - E') \bigcup \{x_0 x_i, x_j x_m\}$. We see that $N(x_0) \bigcup \{x_0\} \subseteq V(C)$ and $N(x_m)^+ \setminus \{x_j\}^+ \subseteq V(C)$. By claim $1, N(x_0) \cap N(x_m)^+ = \emptyset$ and $x_0 \notin N(x_0) \bigcup N(x_m)^+$. Therefore $|C| \ge |N(x_0) \bigcup \{x_0\}| + |N(x_m)^+ \setminus \{x_j\}^+| \ge d(x_0) + 1 + d(x_m) - 1 \ge 2\delta(G)$.

Case 2: All neighbors of x_0 are before the neighbors of x_m . Let i be the maximum such that $x_i \sim x_0$. Let j be the minimum such that $x_j \sim x_m$. (Possibly $x_i = x_j$). Let $G_1 = G[V(x_0Px_i)]$ and $G_2 = G[V(x_iPx_m)]$ which both are Hamiltonian.

By Menger's Theorem, there are 2 disjoint paths Q_1 , Q_2 from $V(G_1)$ to $V(G_2)$ in G, and we can choose Q_1 , Q_2 such that x_i is an end of them, and x_j is an end of them.

Why? If Q_1 , Q_2 do not start at x_i , then we would begin traveling from x_i along x_iPx_j until we encounter some P_i . Then we would define new paths Q_1 , Q_2 , one of which uses x_i as an end. Similarly, do this for x_j .

Then we have the following two cases to consider: (a) $x_i, x_j \in Q_1$; (b) $x_i \in Q_1, x_j \in Q_2$. In both cases we can construct a cycle C using Q_1, Q_2 and all vertices in $\{x_0, x_m\} \bigcup N(x_0) \bigcup N(x_m)$, so $|C| \ge d(x_0) + d(x_m) + 2 - 1 \ge 2\delta(G) + 1$ (Note that the "-1" comes from the possibility that maybe $x_i = x_j$). This proves Theorem 7.

• Theorem 8(Erdős-Gallai).

$$ex(n, \{C_{t+1}, C_{t+2}, \cdots\}) \le \frac{t(n-1)}{2}.$$

Moreover, it is tight when n = k(t-1)+1 for any k, where the extremal graphs are k copies of K_t 's all sharing a fixed vertex.

proof. By induction on n. This is trivial for $n \leq t$. Let G be a graph with no cycle of length $\geq t+1$.

Case 1: $\delta(G) \ge \frac{t+1}{2}$.

If G is 2-connected, then by theorem 7, \exists a cycle $|C| \ge min\{n, 2\delta(G)\} \ge min\{n, t+1\} = t+1$. A contradiction. So G has a cut-vertex u such that $G_1 \bigcup G_2 = G$ and $V(G) \cap V(G_2) = \{u\}$. Let $n_i = |V(G_i)|$, then $n+1 = n_1 + n_2$.

By induction, $e(G) = e(G_1) + e(G_2) \le \frac{t(n_1 - 1)}{2} + \frac{t(n_2 - 1)}{2} = \frac{t(n - 1)}{2}$. Case 1 is done.

Case 2: $\exists v \text{ with } d(v) \leq \frac{t}{2}$. By induction.