Extremal and Probabilistic Graph Theory
Lecture 13
April 12st, Tuesday

Recall the lecture in last class:

Theorem 2. If G is connected, then G has a path of size > min{n, 26(G) + 1}.
Tight: graph G consisting of k;s sharing a common vertex.
Theorem 3(Erdés-Gallai).
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Moreover, when %, the extremal graph is unique, that is, a disjoint union of £;s.

GSL'(TI,, Pt) <

Posa’ rotation. Let P be a longest path in G from u to v. For w € N(v)(V(P), the
path P/ = P — {ww™'} + {wv} is also a longest path in G. This transformation from P to
P’ is called a Posarotation.

New knowledge in this class:

Definition 1. For S C V(G), define N(S) = {v ¢ S : v € N(w) for w € S} to be the
neighborhood of §.

Theorem 6 (Posa). Suppose every S C V(G) satisfying |[N(S)| > min{n — |S|,2|S| + 1}.
Then G has a Hamiltonian path.

Proof. Let P be a longest path in G from u to v. Let S be the set of all endpoint of paths
obtained by repeatingly applying Posa’s rotation from P, which preserve u as an endpoint.
Define S*, S~ (accroding to P). Then every vertex in S has no neighbors in V(G)\V (P),
so N(S) CV(P).

ClaimV z € S, Ng(z) C STJSUS™.

Proof. Suppose 3y € N(z), but y ¢ ST|JSUS™. Then y -y-y* is always a subgraph of
any new path obtained by Posa’s rotation. We then perform a rotation, using zy € E(G),
to get a new path that ends at either y™ or y~, so y* or y~ € S. Therefore y € S~ or
y € ST, a contradiction. This proves claim. |
Then N(S) C STJS™, so [N(S)| <2|S|. But [N(S)| > min{n —|S|,2|S|+ 1}.

This shows that |[N(S)| > n — |5], since V(P) > N(S)|JS. Notice that N(S) and S are
disjoint, we have |V(P)| > |N(S)| + |S| > n, that is to say, P is Hamiltonian path. ]

Remark. This result is classical and has many application, that is to say, for random
graph.

Definition 1. A vertex u is a cut-vertex of G, if G-u is disconnected.

Menger’ Theorem. Let A, B C V(G), G is connected if and only if 3 2 disjoint paths
from A to B.

Theorem 7. If G is 2-connected, then G has a cycle of length at least min{n, 20(G)}.



Remark 1. Tight for graphs G consisting of some K;s sharing 2 vertices.

Remark 2. This implies Dirac’s Theorem.

Exercise. As the condition of Theorem 4 implies that such G must be 2-connected.
Proof of Theorem 7. Let P = xpx1 - - - 2, be a longest path in G. By Theorem 2,
|P| > min{n —1,26(G)}.

Case 0: N(zo)\N(zm)T = 0.

Proof of Case 0. Since N(z0), N(zm) C V(P). If N(zo) (N (zm)t # 0, then we can form
a cycle C, such that V(C) = V(P). So |C| = |P|+1 > min{n,26(G) + 1}. Therefore, claim
1 is done. 1
Case 1: J j <i— 1, such that xg ~ x;, v, ~ 7;.

Proof of Case 1. Pick (i, ) such that |i — j| is minimum. Let E’ be the edge-set containing
all edges in z;Px;. Let C = (P — E') U{zozi, zjzm}. We see that N(zo) U{zo} C V(C)
and N (z,)T\{z;}T C V(C). By claim 1, N(29) (N (zm)" =0 and 29 ¢ N(x0) UN (zm)*.
Therefore |C] > |N(zo) U{zo}| + |N(zp)T\{z;}T| > d(x0) + 1 + d(zm) — 1 > 26(G). |
Case 2: All neighbors of zg are before the neighbors of x,,. Let ¢ be the maximum such
that z; ~ z9. Let j be the minimum such that x; ~ x,,. (Possibly z; = z;). Let G =
GV (xzoPx;)] and Gg = G|V (z;Px,)] which both are Hamiltonian.

By Menger’s Theorem, there are 2 disjoint paths @1, Q2 from V(G1) to V(G2) in G, and
we can choose (Q1, Q2 such that z; is an end of them, and z; is an end of them.

Why? If Q1, Q2 do not start at x;, then we would begin traveling from x; along z; Px; until
we encounter some F;. Then we would define new paths (Q1, @2, one of which uses x; as an
end. Similarly, do this for x;.

Then we have the following two cases to consider: (a) z;, z; € Q1; (b) z; € Q1, ; € Q2. In

both cases we can construct a cycle C using @1, Q2 and all vertices in {zq, zm } U N (z0) U N (zm),

so |C| > d(zo) + d(xm) +2 — 1> 20(G) + 1 (Note that the “-1” comes from the possibility
that maybe x; = x;). This proves Theorem 7. 1

Theorem 8(Erdds-Gallai).
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Moreover, it is tight when n = k(t—1) +1 for any k, where the extremal graphs are k copies
of Kjs all sharing a fixed vertex.

ex(n,{Ciy1,Cita, - -}) <

proof. By induction on n. This is trivial for n < t. Let n > t. Let G be a graph with no
cycle of length > ¢+ 1.

Case 1: §(G) > &L

If G is 2-connected, then by theorem 7, 3 a cycle |C| > min{n,26(G)} > min{n,t + 1} =
t+1. A contradiction. So G has a cut-vertex u such that G1|JG2 = G and V(G) NV (G2) =
{u}. Let n; = |V(G;)|, then n + 1 = ny + no.

By induction, e(G) = e(G1) + e(G2) < t(m{l) + t(m;l) = t(ngl). Case 1 is done.

Case 2: 3 v with d(v) < £. By induction.




