
Extremal and Probabilistic Graph Theory
Lecture 13

April 12st, Tuesday

Recall the lecture in last class:

• Theorem 2. If G is connected, then G has a path of size ≥ min{n, 2δ(G) + 1}.
Tight: graph G consisting of k,ts sharing a common vertex.

• Theorem 3(Erdős-Gallai).

ex(n, Pt) ≤
(t− 1)n

2
.

Moreover, when t
n , the extremal graph is unique, that is, a disjoint union of k,ts.

• Posa’ rotation. Let P be a longest path in G from u to v. For w ∈ N(v)
⋂
V (P ), the

path P ′ = P − {ww+}+ {wv} is also a longest path in G. This transformation from P to
P ′ is called a Posa,rotation.

New knowledge in this class:

• Definition 1. For S ⊆ V (G), define N(S) = {v /∈ S : v ∈ N(w) for w ∈ S} to be the
neighborhood of S.

• Theorem 6 (Posa). Suppose every S ⊆ V (G) satisfying |N(S)| ≥ min{n− |S|, 2|S|+ 1}.
Then G has a Hamiltonian path.

Proof. Let P be a longest path in G from u to v. Let S be the set of all endpoint of paths
obtained by repeatingly applying Posa’s rotation from P , which preserve u as an endpoint.
Define S+, S− (accroding to P ). Then every vertex in S has no neighbors in V (G)\V (P ),
so N(S) ⊆ V (P ).

Claim:∀ x ∈ S, NG(x) ⊆ S+
⋃
S
⋃
S−.

Proof. Suppose ∃ y ∈ N(x), but y /∈ S+
⋃
S
⋃
S−. Then y−-y-y+ is always a subgraph of

any new path obtained by Posa’s rotation. We then perform a rotation, using xy ∈ E(G),
to get a new path that ends at either y+ or y−, so y+ or y− ∈ S. Therefore y ∈ S− or
y ∈ S+, a contradiction. This proves claim.

Then N(S) ⊆ S+
⋃
S−, so |N(S)| ≤ 2|S|. But |N(S)| ≥ min{n− |S|, 2|S|+ 1}.

This shows that |N(S)| ≥ n − |S|, since V (P ) ≥ N(S)
⋃
S. Notice that N(S) and S are

disjoint, we have |V (P )| ≥ |N(S)|+ |S| ≥ n, that is to say, P is Hamiltonian path.

• Remark. This result is classical and has many application, that is to say, for random
graph.

• Definition 1. A vertex u is a cut-vertex of G, if G-u is disconnected.

• Menger’ Theorem. Let A, B ⊆ V (G), G is connected if and only if ∃ 2 disjoint paths
from A to B.

• Theorem 7. If G is 2-connected, then G has a cycle of length at least min{n, 2δ(G)}.
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• Remark 1. Tight for graphs G consisting of some K ,
ts sharing 2 vertices.

• Remark 2. This implies Dirac,s Theorem.

• Exercise. As the condition of Theorem 4 implies that such G must be 2-connected.

• Proof of Theorem 7. Let P = x0x1 · · · xm be a longest path in G. By Theorem 2,
|P | ≥ min{n− 1, 2δ(G)}.
Case 0: N(x0)

⋂
N(xm)+ = ∅.

Proof of Case 0. Since N(x0), N(xm) ⊆ V (P ). If N(x0)
⋂
N(xm)+ 6= ∅, then we can form

a cycle C, such that V (C) = V (P ). So |C| = |P |+ 1 ≥ min{n, 2δ(G) + 1}. Therefore, claim
1 is done.

Case 1: ∃ j < i− 1, such that x0 ∼ xi, xm ∼ xj .
Proof of Case 1. Pick (i, j) such that |i− j| is minimum. Let E′ be the edge-set containing
all edges in xjPxi. Let C = (P − E′)

⋃
{x0xi, xjxm}. We see that N(x0)

⋃
{x0} ⊆ V (C)

and N(xm)+\{xj}+ ⊆ V (C). By claim 1, N(x0)
⋂
N(xm)+ = ∅ and x0 /∈ N(x0)

⋃
N(xm)+.

Therefore |C| ≥ |N(x0)
⋃
{x0}|+ |N(xm)+\{xj}+| ≥ d(x0) + 1 + d(xm)− 1 ≥ 2δ(G).

Case 2: All neighbors of x0 are before the neighbors of xm. Let i be the maximum such
that xi ∼ x0. Let j be the minimum such that xj ∼ xm. (Possibly xi = xj). Let G1 =
G[V (x0Pxi)] and G2 = G[V (xjPxm)] which both are Hamiltonian.

By Menger’s Theorem, there are 2 disjoint paths Q1, Q2 from V (G1) to V (G2) in G, and
we can choose Q1, Q2 such that xi is an end of them, and xj is an end of them.

Why? If Q1, Q2 do not start at xi, then we would begin traveling from xi along xiPxj until
we encounter some Pi. Then we would define new paths Q1, Q2, one of which uses xi as an
end. Similarly, do this for xj .

Then we have the following two cases to consider: (a) xi, xj ∈ Q1; (b) xi ∈ Q1, xj ∈ Q2. In
both cases we can construct a cycle C usingQ1, Q2 and all vertices in {x0, xm}

⋃
N(x0)

⋃
N(xm),

so |C| ≥ d(x0) + d(xm) + 2− 1 ≥ 2δ(G) + 1 (Note that the “-1” comes from the possibility
that maybe xi = xj). This proves Theorem 7.

• Theorem 8(Erdős-Gallai).

ex(n, {Ct+1, Ct+2, · · ·}) ≤
t(n− 1)

2
.

Moreover, it is tight when n = k(t−1)+1 for any k, where the extremal graphs are k copies
of K ,

ts all sharing a fixed vertex.

proof. By induction on n. This is trivial for n ≤ t. Let n > t. Let G be a graph with no
cycle of length ≥ t+ 1.

Case 1: δ(G) ≥ t+1
2 .

If G is 2-connected, then by theorem 7, ∃ a cycle |C| ≥ min{n, 2δ(G)} ≥ min{n, t + 1} =
t+1. A contradiction. So G has a cut-vertex u such that G1

⋃
G2 = G and V (G)

⋂
V (G2) =

{u}. Let ni = |V (Gi)|, then n+ 1 = n1 + n2.

By induction, e(G) = e(G1) + e(G2) ≤ t(n1−1)
2 + t(n2−1)

2 = t(n−1)
2 . Case 1 is done.

Case 2: ∃ v with d(v) ≤ t
2 . By induction.
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